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Linear instability of complex flows may be analyzed by numerical solutions of partial-derivative-based eigenvalue
problems; the concepts are, respectively, referred to as BiGlobal or TriGlobal instability, depending on whether two
or three spatial directions are resolved simultaneously. Numerical solutions of the BiGlobal eigenvalue problems in
flows of engineering significance, such as the laminar separation bubble in which global eigenmodes have been
identified, reveal that recovery of (two-dimensional) amplitude functions of globally stable but convectively unstable
flows (i.e., flows which sustain spatially amplifying disturbances in a local instability analysis context) requires
resolutions well beyond the capabilities of serial, in-core solutions of the BiGlobal eigenvalue problems. The present
contribution presents a methodology capable of overcoming this bottleneck via massive parallel solution of the
problem at hand; the approach discussed is especially useful when a large window of the eigenspectrum is sought.
Two separated flow applications, one in the boundary-layer on a flat plate and one in the wake of a stalled airfoil, are
briefly discussed as demonstrators of the class of problems in which the present enabling technology permits the

study of global instability in an accurate manner.

Nomenclature

D,,D, = 0/0x,d/dy

mem,; = memory required for one floating-point complex
number

memy,,. memory available for computations on each
processor

Narrays = number of arrays to be stored

var = number of variables and equations
» Ny = Chebyshev—Gauss-Lobatto collocation points in the

x and y directions

p = number of processors

Re = Reynolds number

t = time

ARt = time required for one Arnoldi iteration

teIG = time required for the eigenvalues and eigenvectors
calculation

tEvp = time required for the eigenvalue problems creation

tu = time required for the matrix shifting and
lower—upper decomposition

u,v,w = basic flow streamwise, wall-normal, and spanwise
velocity components

X,z = streamwise, wall-normal, and spanwise spatial
coordinates

I. Introduction

INEAR instability analysis of flows has been a growing dis-
cipline during the last century [1,2]. This theory permits deter-
mination of the conditions under which a given flow amplifies small
perturbations, thus evolving into a different (nonlinear) state; one of
the key aims of linear theory is the prediction of laminar-turbulence
transition via solution of conceptually simple eigenvalue problems
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(EVPs). In practice, the solution of the linear EVP resulting from
superposing three-dimensional small-amplitude perturbations upon
a three-dimensional basic flow (i.e., flow which is inhomogeneous
in all three spatial dimensions) presents a numerically daunting
task. Simplifications on the form of the basic flow, the stability of
which is analyzed, are called for, the strongest of which is that of a
“parallel” basic flow, i.e., a steady one- or two-component, one-
dimensional velocity profile. The numerical solution of the
corresponding EVP, of the Orr—Sommerfeld class, is currently
straightforward and may be obtained with almost no restrictions.
However, considering inhomogeneous basic flows in two or three
spatial directions results in partial-derivative EVPs, on occasion
requiring state-of-the-art algorithms and hardware for their solution.
The present contribution discusses one such methodology for the
solution of the linear BiGlobal EVP.

Concretely, in incompressible flow, the problem to be solved is
obtained by assuming modal perturbations and homogeneity in one
spatial direction, say the spanwise direction z. Eigenmodes are
introduced into the linearized Navier—Stokes and continuity equa-
tions according to

(@, p*) = @(x. ), px,y))etFe=en )
where q* = (%, v*, w*)” and p* are, respectively, the vector of
amplitude functions of linear velocity and pressure perturbations,
superimposed upon steady two-dimensional, two- (w = 0) or three-
component, q = (i1, v, w)7, steady basic states. The spanwise wave
number f is associated with the spanwise periodicity length L.
through L. =2mx/f. Substitution of Eq. (1) into the linearized
equations of motion results in the complex BiGlobal eigenvalue
problem [3]

i, + 0, +if=0 )

(L — ity + iw)ii — ;0 — p, =0 3)
— i+ (L= Ty + iw)d— p, =0 @)
— W, — Wy0 + (L + iw)h — ifp =0 ©)

where
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In the compressible case, an Ansatz analogous to Eq. (1) may be
substituted into the compressible linearized equations of motion.
Although the form of the BiGlobal EVP is more involved [4,5], in
this case too, a system of (five) coupled equations for the disturbance
amplitude functions is obtained.

The spatial discretization of either compressible or incompressible
BiGlobal EVPs results in large matrices which, when stored in core,
confine the resolution employed to low Reynolds numbers. On the
other hand, flows of industrial interest usually involve complex
geometries at high Reynolds numbers, requiring resolutions which
cannot be handled by the currently available top-end serial machines.

In this paper, two problems representative of the computational
difficulties associated with the BiGlobal approach in open systems
are considered. The first problem is the instability of a laminar
boundary layer on a flat plate with an embedded separation bubble.
Unlike earlier works [6], where homogeneous Dirichlet boundary
conditions have been used to close the system and to permit the
entrance of wavelike disturbances of the Tollmien—Schlichting class
into the integration domain, a Robin boundary condition is used at
the inflow boundary. This boundary condition imposes a relation
between the wave number and the frequency using information from
local analysis. Numerically, this boundary condition prohibits
reducing the EVP to one with real coefficients. In addition, the com-
putational domain must include several periods of the most unstable/
least stable wavelike eigenmodes in the streamwise direction to
adequately recover the physics. Furthermore, the spatial resolution
must be adequate to recover the fine structure of the instability wave,
especially in the surroundings of the separation bubble. Finally, here,
three-dimensional disturbances are recovered by solution of a system
of four coupled partial differential equations; this is in contrast to
analogous earlier studies [7,8] which solved a system of three
coupled partial differential equations (PDEs), thereby focusing on
two-dimensional Tollmien—Schlichting waves alone. The second
problem considered is the instability of the flow around a stalled
NACAO0015 airfoil. This problem is physically related to the previous
one, but is more interesting from an industrial point of view. A
coordinate transformation implemented for its solution [9] to
represent this relatively complex geometry introduces new nonzero
terms in the matrix discretizing the EVP, as will be discussed later. In
this application too, a large domain is necessary to reduce the influ-
ence of the nonphysical boundary conditions imposed at the far-field
boundary and, together with the nonlocalized structures appearing in
the eigenmodes, extremely large resolutions are required.

Typically, these problems are addressed by using a time-stepping
method for the numerical solution of the BiGlobal EVP [10-12].
Time-stepping approaches were devised at a time when storage of
large matrices was impractical and work optimally for the recovery of
a small number of leading eigenmodes. If additional modes are
necessary (as, for example, in the case of transient growth analysis), a
new time-stepping iteration, which excludes the modes already
identified, is necessary.

Here, an alternative methodology is presented, which forms the
discretized matrix and stores it over several processors of a com-
puting cluster; using distributed-memory parallel computers, the
maximum dimension of the problem which may be solved is thus
determined by the number of processors available. The combination
of distributed matrix formation and storage in conjunction with dense
linear-algebra software is employed to the problem at hand for the
first time.

The proposed solution relaxes both the memory restrictions
associated with the matrix formation and the CPU time limitations
imposed by a serial solution of the EVP. Linear-algebra operations
are performed by the ScaLAPACK, BLACS, and PBLAS parallel,
dense linear-algebra libraries [13]. These libraries are outgrowths of
the well-known, well-tested LAPACK project and have been
documented to work in a satisfactory manner with dense matrices of
leading dimension O(10°) achieving ~100 teraflops on ~20, 000

processors [14]. Supercomputers with several thousand processors
featuring the proposed linear-algebra libraries, such as Mageritf or
Mare Nostrum,* are becoming widely available and are increasingly
deployed for the solution of large-scale scientific problems [15].
The paper is organized as follows: in Sec. II, the proposed
methodology is presented, including information on the spatial
discretization and the matrix distribution. Section III presents results
obtained, both from a numerical and a physical point of view.
Validation and verification work is presented in Sec. IIL.A, where the
capabilities of parallelization are demonstrated. The main body of the
scalability studies is presented in Sec. IIL.B, exclusively devoted to
massive parallelization of the eigenvalue problem. The two physical
instability problems which gave rise to devising of the present
solution methodology are presented in Sec. III.C; in both problems
monitored, the large resolutions employed have been instrumental
for the success of the analysis. Conclusions and some discussion of
alternatives to the methodology presented are discussed in Sec. IV.

II. Massively Parallel Eigenvalue Problem
Solution Methodology

BiGlobal EVPs involve square matrices of large leading dimen-
sion resulting from the spatial discretization of four (five for the
compressible case) coupled partial differential equations. Numerical
solution of such problems is facilitated by numerical methods of a
formal accuracy as high as possible, capable of minimizing the
number of discretization nodes and thus keeping the memory re-
quirements as low as possible. Spectral methods have such charac-
teristics, although they come at the price of dense matrices, which
make implementation of sparse solution techniques not straightfor-
ward. On the other hand, the coupled discretization of two spatial
dimensions results in matrices with a certain degree of sparsity, even
when using spectral methods. Here, only the treatment of the
BiGlobal EVP problem using dense linear-algebra operations is
considered. Experience with spectral methods for the solution of the
BiGlobal EVP suggests that this numerical discretization method-
ology requires matrices of leading dimension @ (10* ~ 10°) for the
coupled discretization of the two spatial directions. On the other
hand, experience with both spectral and finite difference methods for
one-dimensional (ordinary-differential-equation-based) stability
problems [16,17] has delivered a rule of thumb for the number of
nodes required by a spectral and a finite difference numerical method
to obtain results of the same accuracy. This rule of thumb depends on
the order of the finite difference discretization; use of a sixth-order
compact finite difference scheme requires a factor four higher
number of nodes compared with a spectral method of equivalent
accuracy [18]. Extrapolation of such results to the (two-dimensional,
partial-differential-equation-based) BiGlobal EVP suggests that a
high-order finite difference approach would require discretized
arrays the leading dimension of which would be at least 1 order of
magnitude higher than that quoted previously; such arrays would
only be able to be treated by sparse-matrix techniques. By contrast,
spectral methods and dense-matrix algebra has been used presently,
as follows.

A. Spatial Discretization

Spatial discretization is accomplished by Chebyshev—Gauss—
Lobatto (CGL) points

Ezcos%, i=0,....N )

and the correspondent derivative matrices D = 3/9¢, D® =D
D, ...,D"™ [19]. The CGL points are mapped onto the domain of
interest by coordinate transformations, which permit clustering of
nodes in specific regions of the domain, like in boundary layers.
Tensor products are used to form the derivative matrices for the
present PDE-based problem. If N, + 1 and N, + 1 collocation

*Data available at www.cesvima.upm.es.
$Data available at www.bsc.es.
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points are used for the discretization of the x- and y-spatial directions,
respectively, the discrete resulting differentiation matrices have a
leading dimension of (¥, + 1) x (N, + 1) and are obtained by
applying the Kronecker product

D,=D®I, D,=1®D (8)

where [ is the identity matrix. Applying this spectral discretization to
the linear problem in Egs. (2-5) results in a nearly block-diagonal
discretized matrix problem, shown in Fig. 1, with matrices of (global)
leading dimension GLD = N,,, x (N, + 1) x (N, + 1), the factor
N,,, being equal to four in the incompressible case, arising from the
four coupled equations, and five in the compressible case. The
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Fig. 1 Block-diagonal structure of the incompressible BiGlobal EVP
left-hand side matrix in Egs. (2-5) (top) and the equivalent compressible
problem (bottom), when discretized using spectral collocation methods.
For these matrices, N, =N, = 10 Chebyshev—Gauss-Lobatto points
were used.

structure of the matrices, in which many elements are equal to zero,
makes it possible to implement sparse techniques to drastically
reduce the memory requirements. This possibility was tested in a
previous research [20] using the parallel version of the library
SuperLU, but the scalability was shown to be unsatisfactory. Such
sparse techniques are not used here; instead, the problem is treated as
one of dense matrices, which permits greater flexibility in intro-
ducing variations to the linear operators (i.e., different types of
boundary conditions) without altering the data storing and solution
algorithms. The linear operators describing the physics and the
numerics and parallelization used to solve the problem are indepen-
dent. In this manner, it is possible to solve both compressible and
incompressible problems with an arbitrary combination of boundary
conditions by making only minor changes in the core solution
algorithm. The structure of the left-hand-side (LHS) matrices corres-
ponding to both incompressible and compressible problems are
shown in Fig. 1.

B. Arnoldi Algorithm

The large leading dimension of the complex matrices resulting
from the discretization of the problem Eqs. (2-5) makes the appli-
cation of the QZ algorithm (generalized Schur decomposition) [21]
impossible. In contrast, Krylov subspace-based algorithms are used
to recover efficiently the most interesting part of the eigenspectrum.
A shift-and-invert variation of the Arnoldi algorithm [22] is em-
ployed here to transform the large EVP into a several orders-of-
magnitude smaller problem (having a leading dimension equal to the
Krylov subspace dimension, m ~ 200-2000). The QZ algorithm is
used then to obtain the solution of the latter problem.

An Arnoldi algorithm is used; its two main tasks are a lower—upper
(LU) decomposition of the large left-hand-side matrix in Egs. (2-5)
and a certain number of back substitutions equal to the dimension of
the Krylov subspace generated. The first task accounts for most of the
CPU time required in the serial solution, the latter methodology
having been employed in the past in a satisfactory manner. However,
resolution of physical phenomena involving steep gradients and/or
several structures (e.g., Tollmien—Schlichting waves as amplitude
functions of a BiGlobal eigenvector) give rise to the need for a step-
change improvement. Such a borderline case has been encountered
in the problem of instability of the laminar separation bubble at
moderate Reynolds number [23]; using a number of discretizing
points of N, = N, = 60 translates into a LHS matrix leading dimen-
sion O(15,000), requiring O(3.5) GB of in-core memory, and
taking nearly 2 h of CPU time in a fast, shared-memory computer.

C. Data Distribution

Using ScaLAPACK, the parallelization is understood as a two-
step approach. First, a virtual, rectangular processor grid is formed
using all the processors available. Second, the arrays that store both
matrices and vectors are distributed amongst the processor’s grid
following the block-cyclic algorithm [13]. In this second step, each
array is divided into blocks, that is, small pieces of the arrays with a
number of rows and columns given by an user-defined parameter
called blocking factor (BF). ScaLAPACK permits using a different
blocking factor for rows and columns, but according to the square
matrices to be operated on, an unique value of BF was used for both.
The distribution algorithm works independently on rows and
columns. To illustrate the distribution, suppose an array of length
GLD (with entries numbered from 1 to GLD) to be stored on p
processors (numbered O through p — 1). The array is divided into
blocks of size BF, except the last block which will contain GLD mod
BF elements in the most general case. These blocks are numbered
starting from zero and are distributed amongst the processors, so that
the kth block is assigned to the processor of coordinate kK mod p. The
algorithm results in that the element IG (which is the index of the
element on the global matrix) from the original global array maps to
the element IL (which is the index of the element on the local matrix)
of the local matrix assigned to the processor IP (which is the index of
the processor on the processor’s grid), where IL and IP are defined by
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1IG-1
ILZBFX( )+(IG—lm0dBF)+1 9)
BF x p
and
IG—-1

More details on the distribution algorithm can be found in
ScaLAPACK’s documentation [13]. The arrays are stored in a
balanced manner using the memory of all the processors available.
The difference in the number of elements contained in the local arrays
is, at most, equal to the blocking factor, which should be chosen to be
orders-of-magnitude smaller than the global leading dimensions, as
will be shown later. The main memory constraint in the solution of
the BiGlobal EVP is the storage of one large matrix for the incom-
pressible case (two for the compressible case), of leading dimension
GLD. Other arrays also need to be stored, both in distributed or
nondistributed manners, but its size is negligible compared to the
large matrices. The minimum number of processors required for the
solution of the problem is then estimated as

memy

P & Nyrays X GLD? x an

mempo.

where N, is the number matrices to store, mem, is the memory
required for the storage in floating-point format of one complex
matrix element (i.e., 16 B using double precision), and mem,, is the
memory available for the computations per processor. Because of the
almost diagonal structure of the right-hand-side matrix in the incom-
pressible problem, only the storage of the left-hand-side matrix is
required and N, , = 1. Conversely, in the compressible case, the
right-hand-side matrix is more involved, and the two matrices need to
be stored (Nyyys = 2). A small amount of memory is required for
the other variables, the relative amount becoming smaller with
increasing GLD. In any case, as will be discussed later, better
performances are attained when a higher number of processors than
the minimum is used.

III. Results
A. Verification and Validation

The problem of stability in a constant pressure-gradient driven
rectangular duct [24,25] has been solved as a validation test. This
problem has been chosen on the basis of two characteristics:

1) The required basic flow is recovered as the solution of the
related Poisson problem

V2 = —2 (12)

subject to homogeneous Dirichlet boundary conditions. The ana-
lytical solution of the problem is known and can be used both to
check the convergence of the discretization and the performance of
the parallel LU decomposition.

2) There is no transformation which permits converting the
complex BiGlobal EVP into an equivalent EVP with real
coefficients.

The physical instability in the rectangular duct flow is encountered
as a consequence of increasing the aspect ratio AR or increasing the
Reynolds number at low finite values of R # 1Y; in either case, the
resolution requirements increase beyond the maximum memory
available on a typical serial machine. A case in which high resolution
is required, and as such could be used to implement the distributed-
memory techniques discussed herein, is the critical point of an aspect
ratio AR =5 duct, Re = 10,400, 8 =0.91 [25]. The convergence
history is shown in Table 1.

In terms of the theme of the present paper, when the number of
collocation points is less than 40 x 40, it is impossible to determine
the value of the critical eigenvalue, due to the proximity of many
unresolved eigenvalues. The convergence of the third decimal place

IFlow is linearly stable in a square-duct configuration [24].

Table 1 Convergence history for the critical eigenvalue corresponding
to the rectangular duct with R = 5 at Re = 10,400 and 8 = 0.91;
reference frequency result », = 0.21167 [24,25] (leading dimension and
required memory corresponding to the stored matrix are also shown)

N, N, GLD Memory, GB , ;

40 40 6724 0.67 0.20846870 1.229E-002
50 50 10,404 1.61 0.20983043 1.789E-003
60 60 14,884 3.30 0.21091032 1.299E-004
70 70 20,164 6.05 0.21138506 —2.221E-005
80 80 26,244 10.26 0.21146319 —2.687E-005
90 90 33,124 16.35 0.21147609 —2.037E-005
100 100 40,804 24.81 0.21147678 —1.982E-005
110 110 49,284 36.19 0.21147683 —1.972E-005

in w, is attained for a resolution of 70 x 70; this translates in 6 GB of
in-core memory, more than that available on most serial computers.
The convergence of the sixth decimal place is attained at a resolution
of 110 x 110 nodes per amplitude function. This requires in excess of
36 GB and is clearly impossible to be handled by a typical serial
machine.

B. Scalability and Massive Parallelization

The main objective of this work is to break the barrier in resolution
imposed by the limited memory available on even the most power-
ful shared-memory machines. Distributed-memory parallelization
makes it possible to store and compute with matrices whose size is
only a function of the number of processors available, while
drastically reducing the CPU time required for calculations. Three
computing clusters have been used for the present work; their
characteristics are summarized in Table 2. Aeolos is an own-local
distributed-memory machine formed by 128 Myrinet interconnected
xeon microprocessors, with own-compiled versions of BLACS and
ScaLAPACK. At the other end, Mare Nostrum has been used; this
machine is currently the number 13, top 500 supercomputer (at the
time testing commenced, was at number 5), and is situated at the
Barcelona Supercomputing Center and comprises 10240 IBM
970MP processors, interconnected by Myrinet and Gigabit Ethernet
networks. Mare Nostrun features the IBM optimized version of
ScaLAPACK, PESSL. Between the two cluster extremes, another
local facility, Magerit, has been used. Magerit comprises 1200
eServer BladeJS20, each one with two power-PC microprocessors,
interconnected by the Myrinet network, and also features PESSL, a
machine-optimized version of ScaLAPACK.

A first scalability test was performed using the solution of Eq. (12),
as it involves only the construction of a distributed matrix and the
parallel LU decomposition. The local cluster Aeolos was used for
these computations comprising different values of the blocking
factor and matrix leading dimension. Two results are of significance
here, one that the suggested [13] value of the blocking factor BF =
64 for both directions corresponds to the lowest wall time at all
processor-grid configurations examined; as such, in subsequent
computations, this parameter has been kept at its fixed optimal value.
Secondly, and probably most significant, a near-perfect linear scaling
is observed when the number of processors is increased, at all
blocking-factor values. The latter result has been confirmed with
solutions of both smaller and larger leading dimension matrices. The
results of this first test are summarized in Fig. 2. The parallel solution
using 16 processors reduces the computing time to less than an hour
and the use of 64 processors reduces the time required for the serial
solution by a factor of 36.

A second scalability test used Aeolos and Mare Nostrum, by
solving the BiGlobal EVP of the instability of rectangular duct flow
at Re = 100 and B = 1. The results obtained using different resolu-
tions and number of processors are shown in the left part of Fig. 3.
When the low (though perfectly adequate for convergence of the
eigenmode) resolution 40 x 40 is used, the wall-time reduction with
the number of processors is not significant, staying in the same order
of magnitude of the serial solution. As resolution is increased, the
theoretically constant CPU-time/number of processors ratio
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Table 2 Characteristics of the distributed-memory machines used

Cluster No. processors Processors Network Library
Aeolos 128 Intel Xeon Myrinet Own-compiled ScaLAPACK
Magerit 2400 IBM PPC Myrinet and Gigabit PESSL
Mare Nostrum 10,240 IBM 970 MP Myrinet and Gigabit PESSL
T — Icpy (13) LU factorization occupies around half of total wall-clock time, the
PTp matrix generation costs about 20% of the total time, and all other

is visible in the results: the time required to solve a 60 x 60 domain
on four processors is almost 25 min; it is reduced to 12 min for eight
processors and to 7 min on 16 processors. As mentioned earlier,
solution of this problem was found to require almost 2 h CPU time on
a serial machine. The same validation test was also solved on Mare
Nostrum, using a number of processors from 64 to 1024. The results
are shown in the right part of Fig. 3. The large, maximum number of
processors used, 1024, makes it possible to increase resolution up to
256 x 256. The CPU time required when the 80 x 80 domain is
solved always stays under 10 min, but scales poorly with the number
of processors; wall-clock time is even found to increase when more
than 512 processors are employed. When the resolution is increased,
in this case to 128 x 128, the constant T, scaling is recovered.
Conclusions drawn from this part of the work are as follows. As
mentioned in the ScaLAPACK documentation, a workload balance is
required for the code to scale satisfactorily, that is, so that the
theoretically constant T, is attained. If the local matrix, that is, the
submatrix stored in each processor is too small, most of the wall time
is spent on communication between processors; in that situation, the
matrix is said to be overdistributed. On the other hand, if the local
matrix is too large, most of the calculations take place inside each
computer and better performance can be achieved by using a larger
number of processors. A rule of thumb states that the dimension of
the local matrices should be of size ~1000 x 1000. The existence of
an optimal number of processors to solve a given problem is evident,
and this optimal value should be studied for each resolution. Typical
academic BiGlobal EVPs require resolutions corresponding to a
number of processors below 512; however, as this theory enters the
realm of industrial applications, for which the Reynolds numbers
involved are orders-of-magnitude higher than those of academic
problems, resolutions comprising hundreds of points for each
direction are required. A last conclusion concerns the wall-clock time
versus number of processors, assuming a correct workload balance.
The ideal constant value for the T, is nearly accomplished when the

LU decomp of a dim(2") dense matrix by ScaLAPACK on AEOLOS
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Fig. 2 Wall time for the parallel solution of the Poisson model problem

as a function of the number of processors and the blocking factors used.

tasks together account for the last 30%. However, when the number
of processors is increased, effects other than the main parallel task,
the LU decomposition, become increasingly more relevant.

Itis therefore appropriate to turn attention to quantifying scalability
under these conditions next, focusing on problems for which the
dimensions are more representative of the current requirements of
BiGlobal EVPs. In what follows, four aspects are studied: Sec. IILB.1
monitors the time required for the (manual) creation of the left-hand-
side matrix in a distributed manner; Sec. II.LB.2 deals with the LU
decomposition of the EVP matrix, using ScaLAPACK; Sec. II.B.3
studies (in an average manner) the time devoted to the Arnoldi
iteration, and Sec. III.B.4 is dedicated to the QZ subroutine of the
Hessenberg matrix and the calculation of the eigenvectors.

1. Eigenvalue Problem Generation

In the previous section, the creation, in a distributed manner, of the
large leading-dimension matrices describing the eigenvalue pro-
blem (2-5) was found to consume a considerable amount of time
(~20% of the total). This is in contrast to the serial solution of the
same problem, where this fraction of time is negligible. The origins of
this result are to be found in the fact that the dimension of the matrices
grows with the square of the resolution used. Concretely, the fol-
lowing operations are needed to generate the matrices: 1) double loop
over the global matrix dimension: ¢ ~ (GLD)?; 2) value assign-
ment to the correspondent element and processor: ¢ ~ (GLD)?/ p;
3) certain number of loops over the matrix dimension: ¢ ~ GLD.

When the leading dimension of the global matrix GLD is large, the
time required for the EVP generation scales as

tevp ~ (1 + g) - (GLD)? (14)

K being a constant that depends on the processor and communi-
cations speeds. Studies were conducted to evaluate how well this
theoretical scaling is attained. The test problem was solved using a
constant number of collocation points in the y direction (N, = 40), a
variable number of points in the x direction, and a different number of
processors. The CPU time required for the creation of the global
matrix was computed and the results are shown in the left part of
Fig. 4. Thicker, dashed lines belong to Aeolos, whereas solid lines
belong to Magerit. With minor deviations, the behavior of the CPU
time is that described by Eq. (14). To isolate the first-order behavior,
the same time is scaled with GLD and p,

K, p

[ .
EVP Pw(p_{_K)_FGLD

1
GLD? (15)

taking into account second-order effects, whose relative contribution
is unknown a priori. This new variable is plotted against N, and p in
the right part of Fig. 4. The coincidence of the scaled data in the lower
figure indicates that the constant K, is small enough to neglect its
effect. This constant is related to the third operation stated before.
The time consumed for a given resolution and number of processors
is higher in Magerit that in Aeolos. As no library subroutine is used
and there is no communication between processors in this task, this
difference is attributed to a higher speed of the processors of Aeolos.

2. Lower—Upper Decomposition of the Global Matrix

The LU decomposition is the most time-consuming task in both
the serial and parallel versions of the code; serially, it accounts for
over ~90% of the total CPU time, whereas this percentage drops to
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Fig. 3 Scalability tests performed on Aeolos (left) and Mare Nostrum (right). The CPU time required for the solution of the eigenvalue problem (LU
factorization and Arnoldi algorithm) is plotted against the number of processors (procs) for various resolutions (in parenthesis). In brackets, the leading

dimension of the LHS matrix is shown.

~50% in a typical parallel solution. Although efficiency of the code
in this task depends entirely on the library software, fine tuning the
discretization parameters in the parallel version of the code is
essential to obtain optimal performances. The time required for
shifting the matrix is also computed in this section but, as will be
shown, this time is negligible compared to the time devoted to the LU
decomposition. The operations required in this context are 1) loop
over the matrix dimension: ¢ ~ GLD; 2) value assignment to the
correspondent element and processor: t ~ GLD/ p; 3) LU decom-
position, by call to the subroutine: ¢t ~ (GLD)?/ p.

When the leading dimension of the matrix is large, the theoretical
prediction for the scaling is

(GLD)?
p

LU (16)

The same scalability tests as in the previous section were
conducted, and results are shown in the left part of Fig. 5. The trends
predicted from the first-order scaling Eq. (16) are reproduced in all
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cases. To recover second-order effects, the CPU time is scaled with
GLD and p:

Ky -p+K;
GLD?

hw P
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an

where K, K,, and K; are constants different to the ones defined
earlier, but related to the same issues. The scaled times are plotted
against GLD and p on the right side of Fig. 5. The relative importance
of the LU decomposition is even increased over the shifting time
when the dimension of the matrix grows, as the scaled time is reduced
with increasing resolutions. The benefits of using the optimized
library and massive parallelization are evident from the figures,
because the scaled time decreases substantially from Aeolos data to
Magerit, the latter platform affording substantially higher resolu-
tions due to the larger number of processors available. The
importance of the correct data parallelization may be observed on
the lower-right plot. The documentation of ScaLAPACK suggests
that the processor grid be as square as possible for performance to
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Fig. 4 CPU time scaling for EVP generation. The time (left) and time scaled with the number of processors and LHS matrix size (right) is plotted against
the resolution (top) and number of processors (bottom). Thicker, dashed lines belong to Aeolos; solid lines belong to Magerit.
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Fig. 5 CPU time scaling for shift and invert and LU decomposition. The time (left) and time scaled with the number of processors and LHS matrix size
(right) is plotted against the resolution (top) and number of processors (bottom). Thicker, dashed lines belong to Aeolos; solid lines belong to Magerit.

be optimized. The processors’ grids defined in this figure are as
follows: 4 x4 (p =16), 5x5 (p=25), 4x8 (p=32), 6x8
(p=48), 8x8 (p=64), and 8 x 16 (p = 128). In the results
shown in the lower-right part of Fig. 5, it can be seen that
performance at the square processor grid 8 x 8 is much better than
that on any other processor distribution.

3. Arnoldi Iteration

The Arnoldi algorithm generates a Krylov subspace whose dimen-
sion m is orders-of-magnitude smaller than GLD. Nevertheless, m
must increase as the resolution increases, in line with the increase of
the number of processors used. The time required for each Krylov
iteration is generally small but, if the Krylov subspace dimension is
high, the cumulative time cannot be neglected. Here, the time
required for each iteration is averaged over m = 200 iterations. The
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different calculations performed within each Krylov iteration require
time consumption in several places, of which only the more relevant
are taken into account next: 1) loop over the global matrix dimension:
t ~ GLD; 2) value assignment to the correspondent element and
processor: t ~ GLD/ p; 3) backsubstitution on the LU decomposed
matrix: t ~ (GLD)?/p.

When the leading dimension of the matrices is large, the leading-
order effect on time is

GLD?
TArie ~——— (18)
p

The results of the scalability tests are shown in the left part of
Fig. 6. The time consumed increases with increasing resolution,
but almost linearly rather than the expected quadratic trend. The
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Fig. 6 CPU time scaling for one Arnoldi iteration. The time (left) and time scaled with the LHS matrix size (right) is plotted against the resolution (top)
and number of processors (bottom). Thicker, dashed lines belong to Aeolos; solid lines belong to Magerit.
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variation with the number of processors also shows the predicted
trend, but has an important deviation for a given (i.e., p = 48)
processor grid. The conclusion drawn is that what was assumed to be
second-order effects are more significant than implied by the scaling
Eq. (18). The alternative time scaling is then constructed:

TArit K K; 1
S K+ ) 19
GLD? p+(2+p) GLD (19

Here, the time required for tasks 1 and 2, supposed negligible in
Eq. (18), has a more pronounced effect and increases the efficiency as
the resolution becomes higher, as can be seen in upper-right part of
Fig. 6. The lower-right part of the same figure shows that, although
the scaled time versus number of processors is correctly described by
Eq. (18), the relation to the shape of the processor’s grid is not fully
understood. The most plausible explanation relates the increase in
time to one or more tasks, severely affected when the processor’s grid
is not square. The ScaLAPACK suggestion about the shape of the
processor’s grid has been taken into account here, but the exact
cause in the performance degradation in the backsubstitution task is
unclear. The fact that better performance is obtained in Magerit
suggests use of the optimized library version as a possible
explanation.

4. Eigenvalues and Eigenvectors Calculation

Once the Krylov subspace and Hessenberg matrix have been
generated, most of the tasks are performed in each processor in a
serial manner, with no communication between processors. Each
processor stores a copy of the Hessenberg matrix and calls the QZ
subroutine independently; although this approach generates large
redundancy, it is faster than computing the eigenvalues in one
processor only and communicating the data between a large number
of processors. On the other hand, once the eigenvectors from the
Hessenberg are computed, they must be distributed to compute the
Ritz vectors by forming their product with the Krylov subspace base.
This combination of serial (Hessenberg matrix eigensystem com-
putation) and parallel (matrix—matrix product) tasks makes it difficult
to estimate scalings, but much of the workload is distributing data
over the processors, and so it is expected that increasing the number
of processors will increase the CPU time. The major time-consuming
tasks are as follows: 1) double loop over the Hessenberg matrix
dimension in each processor: ¢ ~ (m)? - p; 2) product of distributed
matrices: t~ (m)?-GLD/p; 3) loop over the global matrix
dimension in each processor: t ~ GLD - p.
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Little can be said about the relative importance of each contri-
bution at this point. As the resolution and Krylov subspace dimen-
sion should grow together for approximately the same fraction of the
eigenspectrum to be computed, an increment in resolution will result
in an increment of CPU time. On the other hand, and contrary to what
happens in other tasks, the required time grows linearly with the
number of processors if p is high enough. This theoretical behavior
has been recovered in the numerical experimentation performed, as is
shown in the left part of Fig. 7. Time was scaled with the global
matrix leading dimension, as the dimension of the Hessenberg matrix
was kept constant in all tests:

TriG Kj
~K+p-(K 20
GLD T ( 2+ GLD) 20

The dependence of this scaled time with the resolution and number
of processors is plotted in the right part of Fig. 7. There is no variation
of the scaled time with the resolution, and so the term multiplied by
K5 is neglected. The number of processors has an important effect on
the efficiency of the code, as an increase in p drastically increases the
time #g;g. In this respect Aeolos was found to be much more efficient
than Magerit in performing this task, the time being almost inde-
pendent of the number of processors, probably due to better internal
communications between the processors in the former, as opposed to
the latter platform. A summary of our findings on the relative time
required for each one of the main parallelization tasks is shown in
Fig. 8. When the number of processors is fixed, the relative impor-
tance of the LU-decomposition time increases with the resolution,
reducing the corresponding contribution of Arnoldi iterations and the
eigenvalues and eigenvectors computation. When the resolution is
fixed, the time required for the computation of eigenvalues and
eigenvectors grows notably, being the factor which imposes an
optimal number of processors. The time required for the EVP
generation is around one-fifth of the total CPU time.

C. Applications to Separated Flow Instability

The present methodology enables use of high resolutions as
permitted by the number of processors available; the nearly linear
scaling demonstrated implies that the CPU time necessary for the
recovery of a given window of eigenvalues is an inverse linear
function of the number of processors used. This approach has
permitted the study of problems out of reach of previously available
methodologies of the same class. Two examples are shortly exposed,
one representative of open problems in which the convective nature
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Fig. 7 CPU time scaling for eigenvalues computation. The time (left) and time scaled with the LHS matrix size (right) is plotted against the resolution
(top) and number of processors (bottom). Thicker, dashed lines belong to Aeolos; solid lines belong to Magerit.
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of the dominant instability dictates use of large resolutions, and a
second application, closer to industrial interests, in which, in addition
to the previous considerations, a relatively complex geometry has to
be dealt with.

1. Instability of Laminar Separation Bubble in a Flat-Plate
Boundary Layer

This application has been discussed in detail elsewhere [26]. The
basic flow corresponds to a flat-plate boundary layer with Reynolds
number based on the displacement thickness at the inflow equal to
450 at inflow and 700 at outflow, and a separation bubble with peak
reversed flow ~1% of the far-field velocity. This two-dimensional
flow is analyzed with respect to its three-dimensional global insta-
bility within the entire range of spanwise wave numbers € [0, 00);
in practice, a large number of eigenvalue problems, each corres-
ponding to a given discrete value of 8, are analyzed. The entrance of
Tollmien—Schlichting waves through the inflow is permitted by
imposing the Robin boundary condition

g_q = diaq, where a ~ ay + cy(w— w,) (1)
X

QZ + eigenvectors computation
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0.8 Arnoldi iterations
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Fig. 8 Relative contribution to total CPU time from each main task,
against resolution (top) and number of processors (bottom). The values
are averaged in number of processors and resolution, respectively. The
test case solves the complex BiGlobal EVP by constructing a Krylov
subspace of dimension m = 200, in which 65 eigenvalues and Ritz vectors
are computed.

The dispersion relation D(o, w, f) =0 obtained from local
analysis is used to evaluate the wave number ¢, and the group
velocity ¢y = da/dw at some fixed frequency w,. The two signs
permitted in Eq. (21) avoid the symmetry of the problem with respect
to w. A wave with o > 0 propagates downstream when o > 0, and
upstream when o < 0. Leaving apart the physical meaning of an
upstream moving convective wavelike disturbance, the eigenspec-
trum is no longer symmetric, as is shown in Fig. 9. Furthermore, this
lack of symmetry prohibits the reduction of the problem to an EVP
with real coefficients, which in turn would result in saving half of the
computational memory.

A large window of eigenvalues, that is, a large Krylov subspace
~2000, is required to recover accurately the discretized branches of
eigenvalues corresponding to the wavelike disturbances. To con-
verge the window of eigenspectrum corresponding to the most
unstable/least stable branch of wavelike eigenmodes, a resolution of
N, x Ny, =360 x 64 collocation points has been used; this required
approximately 120 min of wall time on 144 processors, that is, a total
of 300 CPU hours on Mare Nostrum. The reconstruction of the
flowfield composed of the linear superposition of the dominant
wavelike eigenmode at 8 = 0.15 upon the basic flow is also shown in
Fig. 9.

2. Massive Separation on a NACA0015 Airfoil

This application has also been discussed extensively elsewhere
[9]; in this reference, Kitsios et al. provide details on the analytical
coordinate transformation used. The instability of the flow around a
stalled NACAOQO1S5 airfoil has been monitored, which is a problem
physically related to that of the laminar separation bubble on a flat
plate, but with a higher industrial interest. Here, a large domain is
necessary to reduce the influence of the artificial boundary conditions
on the analysis results. Convergence of the solution obtained at each
of the present BiGlobal eigenvalue problems at chord-based
Reynolds number 200 and angle of attack equal to 18 deg required
N, x Ny = 250 x 250 collocation points. The memory requirements
of this stored matrix approached 1 TeraB of memory, distributed over
1024 processors; the computation of the leading part of the spectrum
required 22 h of wall time on Mare Nostrum. This is, to the authors
best knowledge, the largest EVP solved to date using the present
methodology.

0.04- i

Fig. 9 Eigenspectum corresponding to a laminar separation bubble
model on a flat-plate boundary layer at Re;, = 450 and g = 0.15 (top).
Three-dimensional flow reconstruction superposing linearly the least
stable Tollmien—Schlichting eigenmode to the basic flow (bottom).
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Fig. 10 Eigenspectum corresponding to NACA0015 airfoil at Re = 200
and =1 (top). Three-dimensional flow reconstruction superposing
linearly the least stable eigenmode to the basic flow (bottom).

A representative eigenspectrum and a flow reconstruction using
the dominant wavelike eigenmode at 8 = 1 is shown in Fig. 10. Note
that, in contrast with the previous problem, the eigenspectrum is now
symmetric, in accordance with the fact that the boundary conditions
imposed do not alter the symmetry with respect to w. The instability
properties of the two-dimensional basic flow were shown to be
responsible for the three-dimensionalization of the flowfield. In the
snapshot on the figure, the resultant three-dimensional reversed-flow
region is apparent.

IV. Conclusions

A parallel code has been developed for the solution of large partial-
differential-equation eigenvalue problems resulting from the
BiGlobal instability theory. This code employs the dense, parallel
linear-algebra library ScaLAPACK, and distributed-memory
machines to circumvent the restrictions in memory and CPU time
imposed by solution of this problem on serial shared-memory
platforms. A hand-coded parallel version of the Arnoldi algorithm
has been developed, allowing for flexibility, and a detailed study of
the different parallelization aspects has been performed. Although
parallelization of the matrix creation and its LU decomposition has
been straightforward, the parallel implementation of the Arnoldi
algorithm has been rather challenging, especially in terms of
scalability. A solution based on a combination of distributed global
and nondistributed (and then repeated on each processor) arrays has
been proposed. Verification and validation of the algorithm was
provided at low resolutions, by reference to well-studied model
problems. Convergence of results was obtained at high resolutions,
unattainable on serial machines.

Massive parallelization studies have been carried out, using up to
1024 processors, on three different platforms. The comparison
between the wall-clock times indicates that the performance obtained
by the optimized versions of ScalLAPACK is an order of magnitude
better than that offered by the free versions of this library. The
existence of an optimal number of processors at each resolution has
been documented and the effect of using an appropriately con-
structed processor grid has been demonstrated. At the high end of the
number of processors used, the detrimental effect of increasing the
number of processors beyond this optimal has been shown, with an

increase of wall-clock time resulting from overdistribution of
matrices. At the other extreme of the number of processors, if the
minimum number of processors is used to store the global matrix, the
resulting wall time is prohibitive for practical applications. A sys-
tematic study of the scaling of time with resolution and number of
processors has been completed, providing qualitative and quantita-
tive predictions for the wall time required; this is expected to be
useful in future studies devoted to physical aspects of BiGlobal
flow instability.

The present methodology has been employed to analyze physical
problems in which large resolutions are instrumental for the success
of the analysis. Concretely, instability results of three-dimensional
wavelike disturbances of reversed-flow configurations, namely a
laminar separation bubble on a flat plate and massive separation on a
NACAO0015 airfoil, were presented as examples of the applications,
the global instability of which may be addressed successfully by the
proposed enabling technology. Nevertheless, the rather large com-
puting resources required for the analysis of flow instability in
realistic geometries (especially when a large part of the eigenspec-
trum must be recovered) points at the need for investigation into
alternative approaches for the eigenspectrum computation; the
results of such efforts will be presented elsewhere.
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